Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging.
نویسندگان
چکیده
A simple reaction process is developed to synthesize blue, green, yellow and red colour graphene nanoparticles (GNPs) from carbon fibers. Here, we have focused on synthesis of near infra-red GNPs and their biological application for optical imaging of deep tissues and organs.
منابع مشابه
The effect of graphite sources on preparation of Photoluminescent graphene nano-sheets for biomedical imaging
Objective(s): Graphene as two-dimensional (2D) materials have attracted wide attention in different fields such as biomedical imaging. Ultra-small graphene nano-sheets (UGNSs) have been designated as low dimensional graphene sheets with lateral dimensions less than few nanometres (≤ 500 nm) in one, two or few layers. Several studies have proven that the process of acidic exfoliation and oxidati...
متن کاملPhotoluminescent polymer nanoparticles for label-free cellular imaging.
Novel polymer based photoluminescent nanoparticles were fabricated by ultra-sound induced emulsion polymerization and applied to bioimaging of human breast cancer SK-BR-3 cells after ethylenediamine treatment and conjugation with anti-ErbB2 antibody.
متن کاملFunctionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging.
Recently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes. This material belongs to the vast class of photoluminescent carbon nanostructures, including carbon dots, nanodiamonds (NDs), graphene quantum dots (GQDs), all of ...
متن کاملMulticolour Single Molecule Imaging in Cells with Near Infra-Red Dyes
BACKGROUND The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where ...
متن کاملBimodal magnetic resonance imaging-computed tomography nanoprobes: A Review
Bimodal imaging combines two imaging modalities in order to benefit from their advantages and compensate the limitations of each modality. This technique could accurately detect diseases for diagnostic purposes. Nanoparticles simultaneously offer diagnostic data via various imaging modalities owing to their unique properties. Moreover, bimodal nanoprobes could be incorporated into theranostic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 49 44 شماره
صفحات -
تاریخ انتشار 2013